1+sinx | ||
Oblicz całkę ∫ | *ex*dx | |
1+cosx |
1+sin(x) | ex | sin(x) | ||||
∫ | exdx = ∫ | dx + ∫ | exdx | |||
1+cos(x) | 1+cos(x) | (1+cos(x)) |
ex | sin(x) | |||
= ∫ | dx + ( | ex − | ||
1+cos(x) | (1+cos(x)) |
cos(x)(1+cos(x))−(−sin(x))sin(x) | ||
∫ | exdx) | |
(1+cos(x))2 |
ex | sin(x) | |||
= ∫ | dx + ( | ex − | ||
1+cos(x) | (1+cos(x)) |
cos(x)+cos2(x)+sin2(x) | ||
∫ | exdx | |
(1+cos(x))2 |
ex | sin(x) | cos(x)+1 | ||||
= ∫ | dx + ( | ex − ∫ | exdx | |||
1+cos(x) | (1+cos(x)) | (1+cos(x))2 |
ex | sin(x) | ex | ||||
= ∫ | dx + | ex − ∫ | dx | |||
1+cos(x) | (1+cos(x)) | 1+cos(x) |
sin(x) | ||
= | ex + C | |
(1+cos(x)) |