3 | ||
lim (1− | )2n+3 = | |
n |
n | ||
lim ( | )−2n−3 = | |
n−3 |
3 | ||
lim (1+ | )−2n−3 = | |
n−3 |
1 | ||
lim (1+ | )−6x−3 = | |
x−1 |
1 | 1 | |||
lim [(1+ | )x−1]−6 * (1+ | )−6 = e−6 | ||
x−1 | x−1 |
−3 | 2n+3 | |||
= lim[ (1+ | )n] | = (e−3)2 = e−6 | ||
n | n |
−3 | ||
lim (1+ | )n = e−3 | |
n |
a | ||
a oczywiste jest, że : (1 + | )n = ea ? | |
n |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |