| 3 | ||
lim (1− | )2n+3 = | |
| n |
| n | ||
lim ( | )−2n−3 = | |
| n−3 |
| 3 | ||
lim (1+ | )−2n−3 = | |
| n−3 |
| 1 | ||
lim (1+ | )−6x−3 = | |
| x−1 |
| 1 | 1 | |||
lim [(1+ | )x−1]−6 * (1+ | )−6 = e−6 | ||
| x−1 | x−1 |
| −3 | 2n+3 | |||
= lim[ (1+ | )n] | = (e−3)2 = e−6 | ||
| n | n |
| −3 | ||
lim (1+ | )n = e−3 | |
| n |
| a | ||
a oczywiste jest, że : (1 + | )n = ea ? | |
| n |
wyliczyłam to tyle razy że traktuje to już jak wzór