a1+a2+a3+...+an | 1 | |||
tego ciągu wiedząc, że limn→∞ | = | . | ||
1−2n−3n2 | 3 |
r/2 | 1 | |||
więc | = | stąd r =−2 | ||
−3 | 3 |
n(a1+an) | 1 | |||
limn→∞ | = | |||
−6n2−4n−2 | 3 |
n(a1−a1n+2a1+n−1) | 1 | |||
limn→∞ | = | |||
−6n2−4n−2 | 3 |
n2(3a1n−a1+1−1n) | 1 | |||
limn→∞ | = | |||
n2(−6−4n−2n2 | 3 |
−a1+1 | 1 | ||
= | |||
−6 | 3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |