⎧ | u=x u'=1 | ||
∫x5x dx = | ⎩ | v'=5x v=5x/ln5 | = |
5x | 5x | |||
= x * | + c − ∫ | * 1dx | ||
ln5 | ln5 |
5x | ||
więc f '(x)= 1 i g(x) = | ||
ln 5 |
5x | 5x | |||
∫ x*5x dx = x* | − ∫ 1* | dx = | ||
ln 5 | ln 5 |
x*5x | 1 | |||
= | − | ∫ 5x dx = | ||
ln 5 | ln 5 |
x*5x | 1 | 5x | ||||
= | − | * | + C = | |||
ln 5 | ln 5 | ln 5 |
x*5x | 5x | |||
= | − | + C | ||
ln 5 | ln2 5 |