matematykaszkolna.pl
trójkąt opisany na okręgu seba: W trójkąt prostokątny wpisano okrąg. Punkt styczności okręgu dzieli przeciwprostokątną na odcinki o długościach 5 i 12. Oblicz pole trójkąta. Promień okręgu wyszedł 60 ale nie wiem czy dobrze
19 lut 15:28
Mila: rysunek (5+r)2+(12+r)2=172, r>0 25+10r+r2+144+24r+r2=289 2r2+34r−120=0 r2+17r−60=0 Δ=289+240=529 529=23
 −17−23 −17+23 
r=

∉D lub r=

=3
 2 2 
|AC|=12+3=15 |BC|=5+3=8 Spr. 82+152=64+225=289
 1 
PΔ=

*8*15=60
 2 
================
19 lut 17:02
Mila:
19 lut 18:40