x2−4 | ||
Wyznacz równanie stycznej do wykresu fukcji f(x)= | w punkcie | |
x2+2x+1 |
5 | ||
P(x0, | ) | |
4 |
5 | x2−4 | ||
= | |||
4 | x2+2x+1 |
5 | ||
P1(−7, | ) | |
4 |
2x2 + 10x + 8 | ||
f'(x) = | ||
(x+1)4 |
1 | ||
f'(−7) = | ||
36 |
5 | 1 | ||
= | *(−7)+b | ||
4 | 36 |
52 | 13 | |||
b = | = | |||
36 | 9 |
1 | 13 | |||
y= | x + | |||
36 | 9 |
5 | ||
analogicznie z P2(−3, | ) | |
4 |
1 | 1 | |||
y= − | x + | |||
4 | 2 |
1 | 1 | x2−4 | ||||
− | x + | = | ||||
4 | 2 | (x+1)2 |
4x2−16 | ||
−x + 2 = | ||
(x+1)2 |
x2−4 | ||
f(3) = | ||
x2+2x+1 |
5 | ||
f(3) = | ||
16 |
1 | 1 | |||
czyli 2 punkty wspólne dla y = − | x + | |||
4 | 2 |