| x2−4 | ||
Wyznacz równanie stycznej do wykresu fukcji f(x)= | w punkcie | |
| x2+2x+1 |
| 5 | ||
P(x0, | ) | |
| 4 |
| 5 | x2−4 | ||
= | |||
| 4 | x2+2x+1 |
| 5 | ||
P1(−7, | ) | |
| 4 |
| 2x2 + 10x + 8 | ||
f'(x) = | ||
| (x+1)4 |
| 1 | ||
f'(−7) = | ||
| 36 |
| 5 | 1 | ||
= | *(−7)+b | ||
| 4 | 36 |
| 52 | 13 | |||
b = | = | |||
| 36 | 9 |
| 1 | 13 | |||
y= | x + | |||
| 36 | 9 |
| 5 | ||
analogicznie z P2(−3, | ) | |
| 4 |
| 1 | 1 | |||
y= − | x + | |||
| 4 | 2 |
| 1 | 1 | x2−4 | ||||
− | x + | = | ||||
| 4 | 2 | (x+1)2 |
| 4x2−16 | ||
−x + 2 = | ||
| (x+1)2 |
| x2−4 | ||
f(3) = | ||
| x2+2x+1 |
| 5 | ||
f(3) = | ||
| 16 |
| 1 | 1 | |||
czyli 2 punkty wspólne dla y = − | x + | |||
| 4 | 2 |