2 | ||
limn→∞ (n− | )3n= | |
n |
2 | ||
=limn→∞ (n− | )3n= | |
n |
2 | ||
=limn→∞ (1− | )3n *n3n= | |
n2 |
2 | ||
=limn→∞ ((1− | )(n2/2))(6/n)*n3n | |
n2 |
2 | ||
=limn→∞ ((1− | )(n2/2))(6/n)=e0=1 | |
n2 |
2 | ||
2) | −> 0 | |
n |
n − 2 | 2 | 2 | ||||
an = ( | )3n = ( 1 − | )3n = [ ( 1 − | )n]3 | |||
n | n | n |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |