| √1+lnx | ||
∫ | dx | |
| xlnx |
| 1 | |
dx = dt | |
| x |
| √1+lnx | √1+t | |||
∫ | dx = ∫ | dt jak dalej to pociągnąć ![]() | ||
| xlnx | t |
| √1+t | ||
∫ | dt | |
| t |
| 1 | |
dt = du | |
| 2√1+t |
| √1+t | u | u2 | u2 − 1 + 1 | |||||
∫ | dt= ∫ | * 2udu= 2∫ | du = 2∫ | du= | ||||
| t | u2−1 | u2−1 | u2−1 |
| 1 | 1 | 1 | ||||
2∫1+ | du = 2∫du + 2∫ | du = 2u + 2∫ | du | |||
| u2−1 | u2−1 | u2−1 |
| 1 | A | B | |||
= | + | ||||
| u2−1 | u−1 | u+1 |
| 1 | 1 | |||
A = | , B = − | |||
| 2 | 2 |
| 1 | 1 | 1 | 1 | 1 | ||||||
∫ | du = | ∫( | − | )du = | (ln(u−1) − ln(u+1)) + C | |||||
| u2−1 | 2 | u−1 | u+1 | 2 |
| 1 | 1 | 1 | ||||
2u + 2∫ | du = 2u + | (ln(u−1) − ln(u+1)) + C = 2√t+1 + | (ln(√t+1 −1) − | |||
| u2−1 | 2 | 2 |
| 1 | ||
ln(√t+1 +1)) + C = 2√lnx+1 + | (ln(√lnx+1 −1) − ln(√lnx+1 +1)) + C | |
| 2 |
Możesz jeszcze wynik dla pewności zróźniczkować
| 1 | 1 | |||
2u+2∫ | du=2u+ | (ln(u−1)−ln(u+1))+C | ||
| u2−1 | 2 |
| 1 | 1 | |||
2u+2∫ | du=2u+2* | (ln(u−1)−ln(u+1))+C | ||
| u2−1 | 2 |
| u−1 | ||
Wtedy to się zgadza, bo (ln(u−1)−ln(u+1))=ln | , czyli tak jak w odpowiedziach | |
| u+1 |
| u−1 | ||
(z tym, że faktycznie to powiniec być moduł, czyli ln| | |, tak jak oni napisali, bo | |
| u+1 |
| dx | ||
∫ | =ln|x|+C | |
| x |
teraz już rozumiem