| (x+1)2 | ||
2) | ||
| 2x |
| √x2−1 | ||
limx→−∞ | =a=limx→−∞ √1−1/(x2)=1 | |
| x |
| x2−1−x2 | ||
limx→−∞ (√x2−1−ax)=b=limx→−∞ (√x2−1−x)= limx→−∞ | = | |
| √x2−1+x |
| x+1−x | 1 | |||
limx→−∞ | = | |||
| √1−1/x2+1 | 2 |
| 1 | ||
y=x+ | ||
| 2 |
| (x+1)2 | x2+2x+1 | |||
limx→∞ | =a=limx→∞ | = | ||
| 2x2 | 2x2 |
| 1 | 1 | 1 | 1 | |||||
=limx→∞ ( | + | + | )= | |||||
| 2 | x | 2x2 | 2 |
| (x+1)2 | x2+2x+1 | x | ||||
b=limx→∞ ( | −ax)=limx→∞ | − | = | |||
| 2x | 2x | 2 |
| x2+2x+1−x2 | 1 | |||
=limx→∞ | =limx→∞ (1+ | )=1 | ||
| 2x | 2x |
| 1 | ||
y= | +1 | |
| 2 |
| 1 | ||
y= | x+1 | |
| 2 |