| 1 | 1 | |||
g(x)= | + | |||
| x−1 | 3 |
| x + 3 | ||
g(x) = | ? | |
| 3 x − 3 |
| 1 | ||
f(x) = | ? | |
| x + 1 |
| 1 | 1 | |||
natomiast g(x) nalezy narysowac wykres y= | i przesunac go wektor [1 | ] czyli w | ||
| x | 3 |
| 1 | ||
prawo o 1 jednostke i do gory o | jednostki | |
| 3 |
| 1 | 1 | |||
i | do gowry czyli o wektor [2 | ] | ||
| 3 | 3 |
| x+2 | 1 | x+2 | |||
= | * | = | |||
| 3*(x−1) | 3 | x−1 |
| 1 | x−1+3 | 1 | 3 | 1 | 1 | |||||||
= | *[ | ]= | *[1+ | ]= | + | postać kanoniczna g(x) | ||||||
| 3 | x−1 | 3 | x−1 | 3 | x−1 |
| 1 | ||
f(x)→[2, | ]→g(x) | |
| 3 |
| 1 | ||
Asymptota pionowa przesunięta o 2 jednostki w prawo, asymptota pozioma o | j. w górę | |
| 3 |
| 1 | 1 | 1 | ||||
f(x−2)+ | = | + | = | |||
| 3 | x−2+1 | 3 |
| 1 | 1 | 3+x−1 | x+2 | |||||
= | + | = | = | =g(x) | ||||
| x−1 | 3 | 3*(x−1) | 3x−3 |