matematykaszkolna.pl
Wyznacz współrzędne środka okręgu opisanego na tym trójkącie, Lila: Punkty A(1,−1), B(3,5) i C(−7,11) są wierzchołkami trójkąta. Wyznacz współrzędne środka okręgu opisanego na tym trójkącie,
10 lut 19:17
Frost: Środek okręgu opisanego na tym trójkącie leży w punkcie przecięcia się symetralnych boków Środek boku AB S=(2,2) Wyznaczamy równanie prostej przechodzącej przez punkt S i prostopadłej do wektora AB AB=[2,6] 2x+6y+C=0 4+12=−C C=−16 niech to będzie prosta l : 2x+6y−16=0 Środek boku AC S2=(−3,5) Wektor AC=[−8,12] prosta k prostopadła do wektora AC przechodząca przez punkt S2 −8x+12y+C2=0 24+60=−C2 C2=−84 k: −8x+12y−84=0 k−2x+3y−21=0 Wyznaczamy punkt przecięcia prostych k i l 2x+6y−16=0 −2x+3y−21=0 dodajemy obustronnie 9y=37
 37 
y=

 9 
 13 
x=−

 3 
Nie jestem pewny co do obliczeń ale sposób wykonania jest jak najbardziej prawidłowy.
10 lut 19:31
Lila: Dziękuje bardzo za pomoc, obliczenia są prawidłowe emotka
10 lut 19:46
Frost: To się cieszę emotka
10 lut 19:49
Lila: A jak ja emotka aż mi się troche humor poprawił , ale czeka mnie reszta zadań ...
10 lut 20:01
Frost: Analityczna? Prosty dział wszystko robisz z wektora normalnego i prostych emotka
10 lut 20:35
Patryk: Fakt, przyjemny dział Też na nim siedzę Przyjemniejszy na pewno niż planimetria, argghhh
10 lut 20:37