1 + 3 | ||
x1 = | = −2 | |
−2 |
1 − 3 | ||
x2 = | = 1 | |
−2 |
1 | 1 | |||
∫(−x2 − x + 2)dx = −∫(x2)dx − ∫xdx + 2∫dx = − | x3 − | x2 + 2x = | ||
3 | 2 |
x3 | x2 | |||
= − | − | + 2x | ||
3 | 2 |
1 | 1 | (−2)3 | (−2)2 | |||||
...=∫ (− | − | + 2) − ( | − | + 2 * (−2)) = | ||||
3 | 2 | 3 | 2 |
1 | 1 | 8 | 9 | 1 | ||||||
− | − | + 2 − | − 2 − 4 = − | − | − 4 | |||||
3 | 2 | 3 | 3 | 2 |
1 | 1 | |||
P = ∫ ( − x2 − x + 2) dx = [ − | x3 − | x2 + 2 x ] = | ||
3 | 2 |
1 | 1 | 1 | 1 | |||||
= ( − | *13 − | *12 + 2*1 ) − ( − | *(−2)3 − | *(−2)2 + 2*(−2)) = | ||||
3 | 2 | 3 | 2 |
1 | 1 | 8 | ||||
= − | − | + 2 − ( | − 2 − 4) = − 3 + 8 − 0,5 = 4,5 | |||
3 | 2 | 3 |