| (x2−3)*ex | ||
lim x→∞ | =∞ | |
| x |
| (x2−3)*ex | ||
lim x→ −∞ | = ? i tu mam problem | |
| x |
Dla podpowiedzi obie granice wynoszą 0.
| (x2−3)*ex | ∞*0 | |||
lim x→−∞ | = | wychodi cos takiego wiec jak tu zastosowac twierdzenie | ||
| x | ∞ |
| x2−3 | |||||||
|
| 1 | ||
nie tak samo bo w 1 jest e∞ = ∞ a w drugiej e−∞ = | ||
| e∞ |
| (x2 − 3)ex | ||
limx−>−∞ | = | |
| x |
| (x2 − 3) | ∞ | |||
= limx−>−∞ | = [ | ]H | ||
| xe−x | ∞ |
| 2x | ||
= limx−>−∞ | = | |
| e−x − xe−x |
| 1 | 2x | |||
= limx−>−∞ ( | * | ) = | ||
| e−x | 1 − x |
| 1 | 2 | 1 | ||||||||||
= limx−>−∞ ( | * | ) = [ | * (−2) ] = 0 | |||||||||
| e−x |
| e∞ |