| x | ||
T:0<y< | ||
| 1+x3 |
| x2 | ||
V = π∫01 | dx | |
| (1 + x3)2 |
| 1 | ||
Podstawienie: x3 + 1 = t ⇒ 3x2dx = dt ⇒ x2dx = | dt | |
| 3 |
| π | dt | π | 1 | π | 1 | π | ||||||||
V = | ∫12 | = | * (− | )|12 = | * (− | + 1) = | ||||||||
| 3 | t2 | 3 | t | 3 | 2 | 6 |
| x | ||
f(x) = | ||
| 1 + x3 |
| x | x2 | |||
V = π0∫1( | )2dx = π0∫1 | dx = | ||
| 1 + x3 | (1 + x3)2 |
| ⎧ | t = 1 + x3 | ||
| = | ⎨ | dt = 3x2dx | = |
| ⎩ | dx = 1/3x2dt |
| x2 | 1 | 1 | π | 1 | |||||
= π0∫1 | dt = π0∫1 | dt = | 0∫1 | dt = | |||||
| t2 | 3x2 | 3t2 | 3 | t2 |
| π | π | 1 | π | 1 | ||||||
= | 0∫1t−2dt = | [− | }]0|1 = − | [ | ]0|1 = | |||||
| 3 | 3 | t | 3 | 1 + x3 |
| π | 1 | 1 | π | 1 | ||||||
= − | [ | − | ] = − | [ | − 1] = | |||||
| 3 | 1 + 13 | 1 + 03 | 3 | 2 |
| π | 1 | π | 1 | |||||
= − | * (− | ) = | > | |||||
| 3 | 2 | 6 | 2 |