3n + 5 | ||
an = | ||
n + 1 |
3(n+1)+5 | 3n+8 | |||
an+1= | = | |||
n+1+1 | n+2 |
3n+8 | 3n+5 | (3n+8)(n+1)−(3n+5)(n+2) | ||||
an+1−an= | − | = | ||||
n+2 | n+1 | (n+2)(n+1) |
3n2+11n+8−3n2−11n−10 | ||
= | ||
(n+2)(n+1) |
−2 | ||
an+1−an= | ||
(n+2)(n+1) |
3n+5 | 2 | |||
an = | = 3 + | |||
n+1 | n+1 |
2 | 2 | 2 | 2 | |||||
an+1 − an = | − | < | − | = 0 | ||||
n+2 | n+1 | n+1 | n+1 |