Pochodne
gosc000000: pochodne po β i γ
sin(180−β−γ)
1 lut 21:01
Godzio:
f(β,γ) = sin(180 − β − γ) = sin(β + γ)
fβ = cos(β + γ) = fγ
1 lut 21:04
Dziadek Mróz:
f(β, γ) = sin(180 − β − γ)
f(β, γ) = sin(u) u = 180 − β − γ
| d | | d | | d | |
| [f] = |
| [sin(u)] = cos(u) * |
| [u] = *) |
| dβ | | dβ | | dβ | |
| d | | d | |
| [u] = |
| [180 − β − γ] = −1 |
| dβ | | dβ | |
| d | |
| [f] = *) = −cos(180 − β − γ) |
| dβ | |
| d | | d | | d | |
| [f] = |
| [sin(u)] = cos(u) * |
| [u] = **) |
| dγ | | dγ | | dγ | |
| d | | d | |
| [u] = |
| [180 − β − γ] = −1 |
| dγ | | dγ | |
| d | |
| [f] = **) = −cos(180 − β − γ) |
| dγ | |
1 lut 21:11
gosc000000: b*sinγsin(180o−β−γ*tgα
To jest całe zadanie
policzyć pochodne po
b
γ
β
α
1 lut 21:17