sinx | ||
Ja rozwiązałem to w ten sposób limx−>o+ (1+ | −1)x = | |
cosx |
sinx−cosx | ||
limx−>o+ (1+ | } = | |
cosx |
1 | ||
limx−>o+ (1+ | )x = | |
cosxsinx−cosx |
1 | ||
limx−>o+ [(1+ | )cosxsinx−cosx] sinx−cosxcosx *x = | |
cosxsinx−cosx |
xsinx−xcosx | ||
limx−>o+ | = | |
cosx |
xsinx | xcosx | |||
limx−>o+ | − | = | ||
cosx | cosx |
xsinx | ||
limx−>o+ | − x = 0 | |
cosx |