| dx | ||
In=∫ | dla n≥1 | |
| (x2+1)n' |
| 1 | x2+1−x2 | |||
Jn=∫ | dx=∫ | dx= | ||
| (x2+1)n | (x2+1)n |
| 1 | x2 | |||
=∫ | dx−∫ | dx= | ||
| (x2+1)n−1 | (x2+1)n |
| x | ||
=Jn−1−∫x* | dx= drugą całkę licz przez części | |
| (x2+1)n |
| x | x | |||
[x=u, dx=du, dv= | dx, v=∫ | dx − tu podstawienie, licz] | ||
| (x2+1)n | (x2+1)n |
| dx | x2 + 1 | x2 | ||||
∫ | = ∫ | dx − ∫ | dx | |||
| (x2 + 1)n | (x2 + 1)n | (x2 + 1)n |
| x2 | ||
In = In −1 − ∫ | dx | |
| (x2 + 1)n |
| x2 | ||
∫ | dx = ... całkowanie przez części : | |
| (x2 + 1)n |
| x | ||
f = x g' = | ||
| (x2 + 1)n |
| 1 | ||
f' = 1 g = − | ||
| 2(n−1) (x2 + 1)n − 1 |
| −x | 1 | |||
= | + ∫ | dx = | ||
| 2(n−1) (x2 + 1)n − 1 | 2(n−1) (x2 + 1)n−1 |
| −x | 1 | |||
= | + | In − 1 | ||
| 2(n−1) (x2 + 1)n − 1 | 2(n−1) |
| 1 | x | 2n − 3 | ||||
In = | * | + | In − 1 | |||
| 2(n−1) | (x2 + 1)n−1 | 2(n − 1) |
| 1 | ||
∫ | dx , | |
| (x2+1)2 |
| 1 | ||
∫ | dx | |
| (x2+1)3 |
| dx | x | 1 | ||||
∫ | = | + | arctgx+C ? | |||
| (x2+1)2 | 2(x2+1) | 2 |