| 1 | ||
f(x)= ( x2 + x + | )( √x + x ) | |
| x |
| 1 | 1 | 1 | ||||
f'(x)= ( 2x + 1 − | )( √x +x ) + ( | + 1)( x2 + x + | ) | |||
| x2 | 2√x | x |
| 1 | ||
f'(x)=(x2+x+x−1)'(√x+x)+(x2+x+ | )(x1/2+x)'= | |
| x |
| 1 | 1 | |||
(2x+1−x−2)(√x+x)+(x2+x+ | )( | x−1/2+1)= | ||
| x | 2 |
| 1 | 1 | 1 | ||||
(2x+1− | )(√x+x)+(x2+x+ | )( | +1) | |||
| x2 | x | 2√x |
| √x | 1 | x2 | ||||
f'(x) = 2x√x + 2x3 + √x + x − | − | + | ||||
| x2 | x | 2√x |
| x | 1 | 1 | ||||
+ | + | + x2 + x + | ||||
| 2√x | 2x√x | x |
| 5 | 3 | 1 | ||||
bo wynik to jest niby : 3x2 + 2x + | x√x + | √x − | ||||
| 2 | 2 | 2x√x |