=(2x+3)sin(x) + 2cos(x) + constant
2xsin(x) + 3sin(x) + 2xos(x) + constant
ie−ix*x−iei*x+(1+ 3i2)*e−ix+(1−3i2)*eix + constant
x=0
2 + 3x + x2 − x32 − x44 + 0(x5)
π2
(3+2x)cos(x)dx=3+π−2cos(32) ≈ 6.00012
−32
−32
(3+2x)cos(x)dx=3−π+2cos(32) ≈ =0.00011825
−π2