| 1 | 1 | 1 | ||||
∫ | = lim∫ | + lim∫ | =... | |||
| −x2+2x+3 | −x2+2x+3 | −x2+2x+3 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
∫ | = | ∫ | − | ∫ | = | lnIx−3I − | lnIx+1I | |||||||
| −x2+2x+3 | 4 | x−3 | 4 | x+1 | 4 | 4 |
| 1 | 1 | 1 | 1 | 1 | ||||||
...=[ | lnI0−3I − | lnI0+1I] −[ | lnI0−3I − | lnI0+1I] +[ | ln∞ | |||||
| 4 | 4 | 4 | 4 | 4 |
| 1 | 1 | 1 | 1 | |||||
− | ln∞] −[ | lnI−3I − | lnI1I =∞−∞ − | lnI−3I ← no i tutaj nie za bardzo | ||||
| 4 | 4 | 4 | 4 |
| π | ||
jest podany wynik − | ||
| √2 |
?