Mam fajne zadanko z mojej listy z analizy.
Uzasadnij, że zachodzi równość
| 1 | 1 | |||
∏ (1− | )−1 = ς(s) = ∑ | , gdzie iloczyn przebiega po wszystkich liczbach | ||
| ps | ns |
| 1 | ||
Ponadto pokaż, że dla Re(s) > 1, ∑ | ≠ 0. | |
| ns |
| 1 | 1 | 1 | 1 | ||||||||||||||
∏(1− | )−1 = ∏ | = ∏(1+ | + | +...) | |||||||||||||
| ps |
| ps | p2s |
| 1 | ||
φ(n)=n•∏p≤n(1− | ) | |
| n |
| 1 | 1 | 1 | |||||||||||||
(1 − | )−1 = | = 1 + ∑k=1∞ | |||||||||||||
| pns |
| pnsk |
| 1 | ||
∏n=1N (1 − | )−1 = L | |
| pns |
| 1 | 1 | 1 | 1 | 1 | ||||||
(1+ | + | +...)(1+ | + | )...(1+ | +...) | |||||
| p1s | p22s | p2s | p22s | pNs |
| 1 | ||
1 + ∑m=1∞ | = (*) | |
| ms |
| 1 | 1 | 1 | ||||
(*) = 1 + ∑m=1∞ | = ∑pN | + ∑m=pN+1∞ | ||||
| ms | ms | ms |
| 1 | 1 | |||
∏n=1N (1 − | )−1 = ∑pN | przy N → ∞ | ||
| pns | ms |
| 1 | 1 | 1 | ||||
0 < ∏n=1N (1 − | )−1 − ∑pN | = ∑pN+1∞ | ||||
| pns | ms | ms |
| 1 | 1 | 1 | ||||
0 < ∏n=1N (1 − | )−1 − ∑pN | < ∑m=pN+1∞ | ||||
| pns | ms | ms |
| 1 | ||
∑m=pN+1∞ | → 0 więc | |
| ms |
| 1 | 1 | |||
0 < ∏n=1∞ (1 − | )−1 − ∑∞ | < 0 | ||
| pns | ms |