-
Adrian: Proszę o pomoc, nie rozumiem jak się rozwiązuje zadania z przestrzeniami metrycznymi mam coś
takiego:
Naszkicować i nazwać powierzchnię o równaniu:
y=√4−2x2−z2
11 sty 22:06
PW: Pamiętając, że postać równania ogranicza współrzędną y do liczb nieujemnych, podnieść do
kwadratu obie strony:
y
2 = 4 − 2x
2 − z
2
2x
2 + y
2 +z
2 = 4
| | x2 | | y2 | | z2 | |
|
| + |
| + |
| = 1, y ≥ 0. |
| | 2 | | 4 | | 4 | |
To już umiemy nazwać i narysować. Ciekawe jak zadziała drugi warunek konieczny, żeby równanie
miało sens:
2x
2 + z
2 ≤ 4.
11 sty 22:45
Adrian: Ok, ale nie rozumiem po co sprawdzamy drugi warunek ?
11 sty 23:34
PW: Bo pierwiastek musi mieć sens, czyli
4 − 2x2 − z2 ≥ 0
11 sty 23:54