(całka oznaczona, na dole 0 na górze 1)∫xe2xdx
∫x2*sin(x3+1)dx
lim gdzie n−>∞ (1+3n) do potęgi 5n
lim gdzie x−>3 3−xx3−27
| −x+3 | −(x−3) | −1 | ||||
lim | = lim | = lim | ||||
| (x−3) (x2+3 x+9) | (x−3) (x2+3 x+9) | (x2+3 x+9) |
| 1 | ||
=− | ||
| 27 |
| −1 | 1 | |||
[ | ] = [− | ] | ||
| (32+3*3+9) | 27 |
| 3 | 5n | |||
[(1+ | )n]x, gdzie x= | , a to już raczej ogarniesz ![]() | ||
| n | n |
| 3 | ||
[(1+ | )n]5 ![]() | |
| n |
| 1 | ||
u' = 1 v = | e2x
| |
| 2 |
| 1 | ||
.... = x* | e2x − ∫e2xdx | |
| 2 |
| 1 | ||
... = | ∫sintdt | |
| 3 |