| (x + 1)dx |
| ||||||||||||
∫ | = ∫ | ||||||||||||
| √−3x2 + 13x − 12 | √−3x2 + 13x − 12 |
| −6x + 13 − 13 − 6 | ||
= −U{1}[6}∫ | dx | |
| √−3x2 + 13x − 12 |
| −6x+13 − 19 | ||
= −U{1}[6}∫ | dx | |
| √−3x2 + 13x − 12 |
| 1 | −6x + 13 | 1 | ||||
= − | (∫ | dx − 19∫ | dx) | |||
| 6 | √−3x2 + 13x − 12 | √−3x2 + 13x − 12 |
| −6x + 13 | ||
∫ | = | |
| √−3x2 + 13x − 12 |
| 1 | ||
= ∫ | dt = ∫t−1/2dt = 2t1/2 + C = 2(−3x2 + 13x − 12) + C | |
| √t |
| 1 | ||
− | *√−3x2 + 13x − 12 | |
| 3 |