matematykaszkolna.pl
zadanie z wielomianow kubaq: zadanie z wielomianow Wielomian w(x) = x3−11x2+34x−24 ma trzy pierwiastki bedace liczbami naturalnymi mniejszymi od 10. znajdz te pierwiastki potrzebuje pilnie pomocy
7 sty 18:19
5-latek: W(1)=0 wiec dziel wielomian W(x) przez dwumian (x−1) a potem to juz z gorki
7 sty 18:21
kubaq: nie wiem czemu ale wychodzi mi cos zle w dzieleniu schematem hornera gora: 1 − 11 +36 −24 dol: 1 1 −10 +26 2 wychodzi mi rownanie z tego : x2−10x+26 r 2 o co chodzi gdzie jest bład?
7 sty 18:31
5-latek: Dlatego ja nie lubie Hornera tylko normalne dzielenie ma byc x2−10x+24
7 sty 18:40
kubaq: dobra normalnym sposobem wyszlo mi tez x2−10x+24
7 sty 18:41
kubaq: teraz delta?
7 sty 18:42
kubaq: dobra i te 3 pierwiastki to 3,7 praz 1?
7 sty 18:43
pigor: ..., w(1)=0, no to dalej np. tak : w(x) = x3−11x2+34x−24= x3−x2−10x2+10x+24x−24= = x2(x−1)−10x(x1)+24(x−1)= (x−1)(x2−10x+24)= (x−1)(x−4)(x−6), więc x∊{1,4,6} − szukane pierwiastki wielomianu w. ...emotka
7 sty 18:43
kubaq: jak z delty x2−10x+24 moglo Ci wyjsc 4 i 6? delta = b2−4ac = 100−96=4
 10−4 
x1 =

=3
 2 
 10+4 
x2=

=7
 2 
7 sty 18:50
5-latek: tam ma byc Δ
7 sty 18:52
pigor: ... , ja z delty nie liczyłem, tylko w pamięci z wzorów Viete'a a do "delty" podstawia się Δ=2 , a nie deltę .
7 sty 18:55
kubaq: aaa dobra dzieki wielkie, zwracam honor
7 sty 18:55