| x2 − x + 1 | ||
∫ | dx | |
| x2 + x + 1 |
| −2x | −2x | |||
∫(1 + | )dx = ∫dx + ∫ | dx | ||
| x2 + x + 1 | x2 + x + 1 |
| −2x |
| 2x | ||||||||||
∫ | = −2∫ | = −∫ | = | |||||||||
| x2 + x + 1 | x2 + x + 1 | x2+x+1 |
| (2x + 1) − 1 | ||
= −∫ | dx | |
| x2 + x + 1 |
| 2x+1 | 1 | |||
= −∫ | dx + ∫ | dx = ...
| ||
| x2 + x +1 | x2 + x + 1 |
| 1 | 1 | |||
druga całka ... = ∫ | dx ... i ze wzoru: ∫ | dx =
| ||
| (x + 1/2)2 + 3/4 | x2 + a2 |
| 1 | x | ||
*arctg | +C | ||
| a | a |