co i jak, zdarzenia które zmieniły świat
kolanko: Prawdopodobieństwo
Zdarzenia A, B należą do Ω i są jednakowo prawdopodobne, zajście przynajmniej jednego z nich
jest zdarzeniem pewnym, a P (AIB)=2/3. Oblicz P (A\B).
6 sty 15:42
kolanko: Nikt nic?
6 sty 16:02
lol: A probowales w ogole cos zrobic?
Bo na pierwszy rzut oka to wydaje sie proste...
6 sty 16:03
kolanko: Skoro zawsze zachodzi przynajmniej jedno z nich, to P(A\B)=1
6 sty 16:08
lol: A to niby dlaczego?
6 sty 16:11
kolanko: sory, sory: P(A u B) =1
6 sty 16:14
kolanko: nie wiem co dalej
6 sty 16:23
Mila:
P(A)=P(B)
| 2 | | P(A∩B) | | 2 | |
| = |
| ⇔P(A∩B)= |
| P(B) |
| 3 | | P(B) | | 3 | |
P(A∪B)=1=P(B)+P(B)−P(A∩B)⇔
| | 2 | | 3 | |
2P(B)− |
| P(B)=1⇔P(B)= |
| |
| | 3 | | 4 | |
| | 2 | | 2 | | 3 | | 1 | |
P(A∩B)= |
| P(B)= |
| * |
| = |
| |
| | 3 | | 3 | | 4 | | 2 | |
P(A\B)=P(A)−P(A∩B)⇔
6 sty 17:07