Oblicz granicę
Justyna: Pomoże ktoś:
lim (n − 2/ 2/n − 2/n
2 − 1/n
3)
Z góry dziękuję
5 sty 22:09
Saizou :
| | mianownik | |
zapisz to za pomocą |
| czyli U {mianownik} {licznik} ale bez spacji |
| | licznik | |
5 sty 22:14
PW: Gdybyś napisała ułamki, to byłoby jaśniej.
powstaje w wyniku napisania
U { licznik } { mianownik }
bez spacji.
5 sty 22:16
PW: Saizou, radzimy podobnie, ale Ty jako dobrze zapowiadający się matematyk pomyliłeś licznik
i mianownik

.
5 sty 22:17
Justyna: Już poprawiam:
| | 2 | |
lim ( n − |
| ) |
| | 2/n − 2/n2 − 1/n3 | |
5 sty 22:23
PW: Po pomnożeniu licznika i mianownika ułamka przez n
3 otrzymamy
| | 2n3 | | 2n3 − 2n2 − n − 2n3 | |
n − |
| = |
| = |
| | 2n2 − 2n −1 | | 2n2 − 2n − 1 | |
| | 2n2 + n | |
= − |
| . |
| | 2n2 − 2n − 1 | |
Po podzieleniu licznika i mianownika przez n
2:
Na podstawie twierdzeń "o arytmetyce ciągów" stwierdzamy, że granica ciągu (1) jest równa − 1.
5 sty 23:37
Saizou :
PW bo ja jak matematyk (przyszły), myślę co innego, mówię co innego a robię jeszcze coś
innego
| | licznik | |
ale myślałem o |
| |
| | mianownik | |
5 sty 23:51
PW: Jasne, Panie Kolego, a granicę policzyłem dobrze?
6 sty 00:31