Proszę...
| n(n+1) | ||
13+23+33+...+n3=[ | ]2 | |
| 2 |
| 1(1+1) | ||
L= 13 = 1 P= [ | ]2= 12=1
| |
| 2 |
| k(k+1) | ||
mamy: 13 +23 +....... +k3= [ | ]2
| |
| 2 |
| (k+1)(k+2) | ||
13+23 +.... + k3 + ( k+1)3 = [ | ]2
| |
| 2 |
| k(k+1 | ||
L= 13 +23 +... +k3+(k+1)3= [ | ]2 + ( k+1)3=
| |
| 2 |
| k2 *(k+1)2 +4(k+1)3 | (k+1)2[k2 +4(k+1)] | (k+1)2*(k2+4k+4) | ||||
= | = | = | =
| |||
| 4 | 4 | 4 |
| (k+1)2(k+2)2 | (k+1)(k+2) | |||
= | = [ | ]2
| ||
| 4 | 2 |
