| 1 | ||
∫ | dx | |
| √−3x2+2x+1 |
| 1−t | ||
x = 2 | ||
| t2+3 |
| (1−t)t | ||
√−3x2+2x+1 = 2 | +1 | |
| t2+3 |
| 2t−2t2+t2+3 | ||
√−3x2+2x+1 = | ||
| t2+3 |
| t2−2t−3 | ||
√−3x2+2x+1 = − | ||
| t2+3 |
| −1*(t2+3)−2t(1−t) | ||
dx = 2 | dt | |
| (t2+3)2 |
| −t2−3−2t+2t2 | ||
dx = 2 | dt | |
| (t2+3)2 |
| t2−2t−3 | ||
dx = 2 | dt | |
| t2+3)2 |
| 1 | t2+3 | t2−2t−3 | ||||
∫ | dx = ∫(− | )*(2 | )dt | |||
| √−3x2+2x+1 | t2−2t−3 | t2+3)2 |
| 1 | 1 | |||
∫ | dx =−2∫ | dt | ||
| √−3x2+2x+1 | t2+3 |
| 1 | 2 | 1 | |||||||||||||
∫ | dx =− | ∫ | dt | ||||||||||||
| √−3x2+2x+1 | 3 |
|
| 1 | 2 | 1 | |||||||||||||
∫ | dx =− | ∫ | dt | ||||||||||||
| √−3x2+2x+1 | 3 |
|
| 1 | 2√3 |
| |||||||||||||
∫ | dx =− | ∫ | dt | ||||||||||||
| √−3x2+2x+1 | 3 |
|
| 1 | 2√3 | t | ||||
∫ | dx =− | arctg( | )+C | |||
| √−3x2+2x+1 | 3 | √3 |
| 1 | 2√3 | t | ||||
∫ | dx =− | arctg( | )+C | |||
| √−3x2+2x+1 | 3 | √3 |
| √−3x2+2x+1 − 1 | ||
t = | ||
| x |
| 1 | 2√3 | √−3x2+2x+1 − 1 | ||||
∫ | dx =− | arctg( | )+C | |||
| √−3x2+2x+1 | 3 | √3x |
| 1 | 2√3 | 1 − √−3x2+2x+1 | ||||
∫ | dx = | arctg( | )+C | |||
| √−3x2+2x+1 | 3 | √3x |
| 2 | 1 | |||
−3x2+2x+1 = −3(x2− | x− | ) | ||
| 3 | 3 |
| 2 | 1 | 1 | 1 | |||||
−3x2+2x+1 = −3(x2− | x + | − | − | ) | ||||
| 3 | 9 | 9 | 3 |
| 4 | 1 | |||
−3x2+2x+1 = | − 3(x− | )2 | ||
| 3 | 3 |
| 1 | 1 | |||
∫ | dx = ∫ | dx | ||
| √−3x2+2x+1 | √4/3−3(x−1/3)2 |
| 2 | ||
√3(x−1/3) = | t | |
| √3 |
| 2 | ||
√3dx = | dt | |
| √3 |
| 2 | ||
dx = | dt | |
| 3 |
| 1 | 2 | 1 | ||||
∫ | dx = | ∫ | dt | |||
| √−3x2+2x+1 | 3 | √4/3−4/3t2 |
| 1 | 2 | √3 | 1 | ||||
∫ | dx = | ∫ | dt | ||||
| √−3x2+2x+1 | 3 | 2 | √1−t2 |
| 1 | √3 | 1 | ||||
∫ | dx = | ∫ | dt | |||
| √−3x2+2x+1 | 3 | √1−t2 |
| 1 | √3 | |||
∫ | dx = | arcsin()+C | ||
| √−3x2+2x+1 | 3 |
| 2 | ||
√3(x−1/3) = | t | |
| √3 |
| √3 | |
√3(x−1/3) = t | |
| 2 |
| 1 | |
(3x−1) = t | |
| 2 |
| 1 | √3 | 3x−1 | ||||
∫ | dx = | arcsin( | )+C | |||
| √−3x2+2x+1 | 3 | 2 |