matematykaszkolna.pl
Funkcja Dżepetto 18:
  2x + a  
Do wykresu funkcji opisanej wzorem f(x) =

należy punkt A = ( −1, 1 ).
  x − b  
Wiedząc, ze dziedziną funkcji jest zbiór R \ { −2 } , wyznacz zbiór wartości funkcji i jej miejsca zerowe.
25 gru 16:19
:):
 −2+a 
1=

 −1−b 
 2x+a 
0=

 x−b 
25 gru 16:25
Dżepetto 18: Niestety nie rozumiem co dało nam podstawienie do funkcji pkt A. Co do drugiej linijki szukając miejsc zerowych też dalej nie mam pojęcia co z tym zrobić i co z tym a i b.
25 gru 16:29
:): z 1 wyszło a+b=1, myslę emotka
25 gru 16:31
:):
 a 
z 2 wyszło x0= −

 2 
25 gru 16:32
Dżepetto 18: Racja, z jedynki wyszło a+b=1 choć nie rozumiem 2. gdzie zniknęło b; jak wyliczyłeś miejsce zerowe x0 oraz co z tym ZW?
25 gru 16:35
:): ułamek jest równy 0, jesli mianownik jest równy 0 , x≠b
25 gru 16:38
Dżepetto 18: Oczywiście emotka Lecz masz może jakiś pomysł jak ZW tej funkcji?
  a  
Jedno polecenie zrealizowane i zrozumiane mz = −

emotka
  2  
25 gru 16:51
:): no to mamy tak a+b=1 i U4−a}{2+b}∊ZW
 2x+a 4−a 
ZW={

; x≠ −2 i a+b=1} \ {

}
 x−b 2+b 
25 gru 16:56
:):
 4−a 
*

∉ZW
 2+b 
25 gru 16:56
Dżepetto 18:
  a  
Zatem ostateczna odpowiedź to x0= −

a ZW zawiera się w 2 "wyrażeniach"?
  2  
  2x+a  
Pierwsza z nich

−warunek do niej to x≠ −2 a druga: a+b=1 i załozeniem do niej
  x−b  
  4 −a  
jest

? czy coś pomyliłem
  2+b  
25 gru 17:18
:): nie, ZW to ten zbiór co napisałam, a i b to parametry, od nich zależy wartość funkcji, dla konkretnych argumentów
25 gru 17:49
:): 4−a/2+b to wyłączona wartość dla x=−2, który nie należy do dziedziny
25 gru 17:50
Dżepetto 18: Właśnie nie wiem jak interpretować zapis ZW ZW={2x+a/x−b , x≠2, a+b=1} \ f(−2) czy może ZW={2x+a/x−b} \ f(−2) i założenia obok : x≠2 ⋀ a+b=1?
25 gru 17:59
:): ZW to zbiór, a założenia na elementy należy umieszczac w zapisie zbioru co jest nie tak z moim zapisem? z 16,56? 4−a/2+b to liczba, która nie jest wartością
25 gru 18:02
Dżepetto 18: Czyli pisząc na kartce mam zapisać ZW dokładnie tak jak zapisałeś go w 16:56 czy może mam napisać recznie jakiś inny znak zamiast ";"? Niestety z załozeniami na elementy spotykam sie chyba pierwszy raz =p
25 gru 18:09
:): dokładnie tak jak napisałam emotka
25 gru 18:17
Dżepetto 18: Merci beaucoup! emotka
25 gru 18:21
megi: rysunek
 2x+a −2+a 
f(x)=

⇒ f(−1)=

= −2+a
 x+2 −1+2 
f(−1)=1 ⇒ a−2=1 ⇒ a= 3
 2x+3 2(x+2)−1 −1 
f(x)=

=

= 2+

, u[−2,2]
 x+2 x+2 x+2 
ZW=R \ {2}
25 gru 18:22
megi: Jeszcze miejsce zerowe f(x):
 3 
f(x)=0 ⇔ 2x+3=0 ⇒ xo=−

 2 
25 gru 18:33
Dżepetto 18: Teraz widzę wszystko jak na dłoni. Megi po x kolejny ratujesz, dzięki emotka
25 gru 19:21
Dżepetto 18: Choć mam jedno pytanie; skąd wzięło się +2 w mianowniku zamiast −b?
25 gru 19:24
megi:
 2x+a 
Z dziedziny : D= R\{−2} ⇒ b= −2 to f(x)=

 x+2 
25 gru 19:36
:): ale b to parametr, argument to x ? to x≠ −2
25 gru 20:12
megi:
 2x+a 
Jeżeli D=R\ {−2} to f(x)=

⇒ b= −2
 x+2 
25 gru 20:13
megi: @ emotka: ........... za dużo "napoju" było?emotka
25 gru 20:20
:): emotka dalej nie rozumiem, "napojów" nie było, ale wierze na słowo, ja dawno to "brałam" emotka
25 gru 20:25
megi:
 3 
Odgadnij "b" jeżeli D= R\{1} dla f(x)=

 x+b 
25 gru 20:27
:): b= −1?
25 gru 20:40
megi: No i okemotka
25 gru 20:42
megi: I podobnie w tym zadaniu podanym przez Dżepetto18
25 gru 20:43
:): teraz kapuje emotka jestem mądrzejsza troszkę emotka znowu nie zajarzyłam wczesniej dzięki
25 gru 20:43
Dżepetto 18: Oczywiście, megi dziękuję za wyjaśnienie emotka PS. Polecam hobbit bitwa 5−ciu armii; wczoraj nie odp bo zapadła szybka decyzja żeby na niego skoczyć
26 gru 11:44