A(−3,−2), C(5,6) , B(1+2√7,0)
S(x,y) i R2=|AS|2=|CS|2=|BS|2
zatem: (x+3)2+(y+2)2=(x−5)2+(y−6)2 ⇒ ........... x+y=3 ⇒ y= 3−x
i |BS|2=|AS|2 ⇒ .............. −4x(1+√7)= −4(1+√7) ⇒ x=1 i y=2
S(1,2) i R2= ...........=32
y= −|x−1|+2 i S∊ (y= −|x−1|+2) i D(5, −2)
Proste AS i DS są prostopadłe , bo aAS=1 i aSD= −1
| 1 | ||
Pole szukanego obszaru, to pole wycinka ADS= | P(koła) | |
| 4 |
| 1 | ||
Pw= | πR2= ..... = 8π[j2] | |
| 4 |