3 | |
R. Znajdź pole powierzchni całkowitej stożka ściętego. | |
2 |
3 | ||
r1 = | R | |
4 |
7 | ||
x = | R | |
12 |
3 | 7 | 4 | ||||
r2 = r1 + x = | R + | R = | R | |||
4 | 12 | 3 |
25 | ||
l = r1 + r2 = | R | |
12 |
1 | 3 | 3 | ||||
r2= | * | R= | R | |||
2 | 2 | 4 |
3 | ||
|PC|= | R | |
2 |
3 | 3 | |||
AD=BC=OB+PC=2* | R+e= | R+e | ||
4 | 2 |
3 | ||
e2+(2R)2=( | R+e)2 | |
2 |
9 | ||
e2+4R2= | R2+3eR+e2 | |
4 |
7 | ||
e= | R | |
12 |
3 | 7 | |||
r1= | R+ | R | ||
4 | 12 |
4 | ||
r1= | R | |
3 |