| 1 | 1 | 1 | ||||
1) ∫x2arctgx dx = | x3 arctgx − | ∫x3 | dx //przez części | |||
| 3 | 3 | 1+x2 |
| 1 | 1 | 1 | x dx | |||||
2) = | x3 arctgx − | ∫x dx + | ∫ | |||||
| 3 | 3 | 3 | 1+x2 |
| 1 | 1 | 1 | 2x dx | |||||
3) = | x3 arctgx − | ∫x dx + | ∫ | //pochodna | ||||
| 3 | 3 | 6 | 1+x2 |
| 1 | 1 | 1 | ||||
4) = | x3 arctgx − | x2 + | ln(1+x2) + C | |||
| 3 | 6 | 6 |
| 1 | 1 | 1 | 1 | x dx | |||||
∫x3 | dx = | ∫x dx − | ∫ | ||||||
| 3 | 1+x2 | 3 | 3 | 1+x2 |
| x3 | x(x2+1)−x | x | |||
= | = x − | ||||
| 1+x2 | 1+x2 | 1+x2 |