| π | ||
y=arctg(2+sinx)−arctg(1+sinx) w punktach przecięcia tej lini z prostą y= | ||
| 4 |
| 1 | 1 | |||
y`=(arctg(2+sinx)−arctg(1+sinx)`⇔ | (cosx)− | (cosx) | ||
| 1+(2+sinx)2 | 1+(1+sinx)2 |
| cosx | cosx | |||
y`= | − | |||
| 1+(2+sinx)2 | 1+(1+sinx)2 |
| cosx | cosx | |||
y`= | − | |||
| 5+4sinx+sin2x | 2+2sinx+sin2x |
| −cosx(2sinx+3 | ||
y`= | ||
| (5+4sin+sin2x)(2+2sinx+sin2x) |