| 2 | ||
o) f(x)= | Df x∊R | |
| x2+1 |
| (2)'(x2+1)−2(x2+1)' | ||
f'(x)= | ||
| (x2+1)2 |
| 0−4x | −4x | |||
f'(x)= | = | |||
| (x2+1)2 | (x2+1)2 |
| [(−4)'x+(−4)*(x)'](x2+1)2−4x[(x2+1)2]' | ||
f"(x)= | ||
| (x2+1)4 |
| [0−4](x2+1)2−4x[2(x2+1)*(x2+1)'] | ||
f''(x)= | ||
| (x2+1)4 |
| −4(x2+1)2−4x[2(x2+1)*2x] | ||
f"(x)= | ||
| (x2+1)4 |
| −4(x2+1)2−16x2(x2+1) | ||
f"(x)= | ||
| (x2+1)4 |
| −4(x2+1)[x2+1+4x2] | ||
f"(x)= | ||
| (x2+1)4 |
| −4(5x2+1) | ||
f"(x)= | ||
| (x2+1)3 |
| 4(3x2−1) | ||
f"(x)= | ||
| (x2+1)3 |
Teraz pytanie, ja mam źle czy po prostu odpowiedź w pdr jest zła? Proszę o odpowiedź