| cos2x | ||
f(x) = | ||
| sin2x |
| −sin22x − (cos2x)(2cos2x) | |
| sin22x |
| −1 | ||
ogólnie w odpowiedziach jest | ||
| 2sin2x |
| cos2x | cosx | 1 | ||||
f(x)= | = | = | ctgx | |||
| 2sinx*cosx | 2 sinx | 2 |
| cos2x | ||
f(x)= | ||
| sin2x |
| 1 | ||
f'(x)=[(ctgx)2]'=2ctgx*(ctgx)'=2ctgx*(− | ) | |
| sin2x |
| −2ctgx | sin2x | |||
f'(x)= | * | |||
| sin2x | sin2x |
| 1 | 1 | |||
f(x) = | − | |||
| 2cos2x | 4cos4x |
| 1 | −4cosx*(−sinx) | sinx | ||||
( | )'= | = | ||||
| 2cos2x | 4cos4x | cos3x |
| −1 | 4*4cos3x*(−sinx) | −sinx | ||||
( | )'= | = | ||||
| 4cos4x | 16cos8x | cos5x |
| sinx | sinx | |||
f'(x)= | − | = | ||
| cos3x | cos5x |
| 1 | 1 | |||
=sinx*( | − | )= | ||
| cos3x | cos5x |
| cos2x−1 | −sin3x | |||
=sinx* | = | |||
| cos5x | cos5x |
| 2cos2x − 1 | cos 2x | |||
= | = | = | ||
| 4cos4 x | 4cos4 x |
| 2sin2x*4cos4x − cos2x*16*(−sin34x) | ||
= | ||
| 16cos8x |

