| 1−sin4x − cos4x | ||
f(x)= | ||
| 1−cos2x − sin6x |
| 1−sin4x−cos4x | ||
f(x)= | = przekształcamy tożsamościowo | |
| 1−cos2x−sin6x |
| (1−sin2x)*(1+sin2x)−cos4x | ||
= | = | |
| sin2x−sin6x |
| cos2x*(1+sin2x)−cos4x | ||
= | = | |
| sin2x*(1−sin4x) |
| cos2x*[1+sin2x−cos2x] | ||
= | = | |
| sin2x*(1−sin2x)*(1+sin2x) |
| 2sin2x*cos2x | ||
= | = | |
| sin2x*cos2x*(1+sin2x) |
| 2 | ||
f(x)= | ||
| 1+sin2x |