| σz | |
=(x2 y)' lnx + x2 y (lnx)' = 2xylnx+x2 y 1/x = 2xylnx+xy | |
| σx |
| σz | |
=(x2 y)' lnx + x2 y (lnx)' = x2 lnx | |
| σy |
| x+y | ||
z= | ||
| x−y |
| σz | (x+y)'(x−y)−(x+y)(x−y)' | 1(x−y)−(x+y)1 | −2y | ||||
= | = | = | |||||
| σx | (x−y)2 | (x−y)2 | (x−y)2 |
| σz | (x+y)'(x−y)−(x+y)(x−y)' | 1(x−y)−(x+y)(−1) | 2x | ||||
= | = | = | |||||
| σy | (x−y)2 | (x−y)2 | (x−y)2 |