| 2x | ||
dv = 3x2 + 2 u = | ||
| ln(2) |
| 2x(x3 + 2x − 1) | 2x(3x2 + 2) | |||
... = | (*) − ∫ | dx = | ||
| ln(2) | ln(2) |
| 1 | ||
= (*) − | ∫(3x2 + 2)2xdx = ... | |
| ln(2) |
| 2x | ||
dv = 6x u = | ||
| ln(2) |
| 1 | 2x(3x2 + 2) | 1 | ||||
... = (*) − | ( | (**) − | ∫6x2xdx) = ... | |||
| ln(2) | ln(2) | ln(2) |
| 2x | ||
dv = 6 u = | ||
| ln(2) |
| 1 | 1 | 2x6x | 6 | |||||
... = (*) − | ((**) − | ( | − | ∫2xdx)) = | ||||
| ln(2) | ln(2) | ln(2) | ln(2) |
| 2x(x3 + 2x − 1) | 1 | 2x(3x2 + 2) | ||||
= | − | ( | − | |||
| ln(2) | ln(2) | ln(2) |
| 1 | 2x6x | 2x6 | ||||
( | − | )) = | ||||
| ln(2) | ln(2) | ln2(2) |
| 2x(x3 + 2x − 1) | 1 | 2x(3x2 + 2) | ||||
= | − | ( | − | |||
| ln(2) | ln(2) | ln(2) |
| 2x6xln(2) − 2x6 | ||
) = | ||
| ln3(2) |
| 2x(x3 + 2x − 1) | 2xln2(2)(3x2 + 2) − 2x6xln(2) + 2x6 | |||
= | − | = | ||
| ln(2) | ln4(2) |
| 2xln3(2)(x3 + 2x − 1) − 2xln2(2)(3x2 + 2) + 2x6xln(2) − 2x6 | ||
= | = | |
| ln4(2) |
| 2x | ||
= | (ln3(2)(x3 + 2x − 1) − ln2(2)(3x2 + 2) + ln(2)6x − 6) | |
| ln4(2) |