| 2 | 1 | |||
lim x−>2 ( | + | ) | ||
| 2x−x2 | x2−3x+2 |
| −2 | 1 | −(x−2) | −1 | |||||
f(x)= | + | = ..... | = | |||||
| x(x−2) | (x−2)(x−1) | x(x−2)(x−1) | x(x−1) |
| 1 | ||
x→2 limf(x)=f(2)= − | ||
| 2 |
przepraszam za kłopot
| −2*(x−2)(x−1)+x(x−2) | |
⇔ | |
| x(x−2)(x−2)(x−1) |
| (x−2)(−2(x−1)+x) | |
⇔ | |
| x(x−2)(x−2)(x−1) |
| −2(x−1)+x | |
⇔ | |
| x(x−1)(x−2) |
| −2x+2+x | |
⇔ | |
| x(x−1)(x−2) |
| −x+2 | |
⇔ | |
| x(x−1)(x−2) |
| −(x−2) | |
| x(x−1)(x−2) |