| √1−x | ||
∫ | dx | |
| √1+x |
| 1−x | 1−t2 | |||
t2 = | ⇔ t2 +t2x = 1−x ⇔ x(1+t2) = 1−t2 ⇔ x = | |||
| 1+x | 1+t2 |
| −2t(1+t2)−2t(1−t2) | −4t | |||
Wówczas dx = | dt = | dt | ||
| (1+t2)2 | (1+t2)2 |
| −4t | −4t2 | |||
Twoja całka = ∫t | dt = ∫ | dt =... | ||
| (1+t2)2 | (1+t2)2 |
| −2t | 1 | |||
v' = | → v= | |||
| (1+t2)2 | 1+t2 |
| 1 | 1 | 2t | ||||
... = 2t | − ∫2 | dt = | − 2arctgt+C = ... wracasz do | |||
| 1+t2 | 1+t2 | 1+t2 |