| 2−√5 | ||
Jednym z rozwiązań równania x2+x+x=0 jest liczba | . Wynika stąd że liczba c nalezy | |
| 4 |
| 1 | 1 | 1 | 1 | |||||
x2 + x + c = (x+ | )2 − | + c = (x+ | )2 − ( | − c). | ||||
| 2 | 4 | 2 | 4 |
| 1 | 1 | |||
(x+ | )2 − ( | − c) = 0 | ||
| 2 | 4 |
| 1 | ||
− c | ||
| 4 |
| 1 | ||
− c > 0 | ||
| 4 |
| 1 | ||
(1) c < | . | |
| 4 |
| 2−√5 | ||
+ x2 = −1 | ||
| 4 |
| −6+√5 | ||
x2 = | . | |
| 4 |
| 2−√5 | −6+√5 | |||
c = x1·x2 = | ||||
| 4 | 4 |
| −17 + 8√5 | 1 | √5 | 1 | 1 | ||||||
c = | = −1 − | + | > −1 − | + 1,11 = 0,11 − | ||||||
| 16 | 16 | 2 | 16 | 16 |