wyprowadź podane wzory funkcji trygonometrycznych
DanielZ: Mam poniższe wzory, ale nie wiem jak można je wyprowadzić. Proszę o pomoc jak je wyprowadzić ze
zwykłych zależności w funkcjach trygonometrycznych.
3 gru 15:18
J:
cos
2x + sin
2x = 1 ⇔ cos
2x + cos
2x*tg
2x = 1 ⇔ cos
2x(1 + tg
2x) = 1 ⇔
| | 1 | | 1 | |
⇔ cos2x = |
| ⇔ cosx = |
| |
| | 1 + tg2x | | √1 + tg2x | |
3 gru 15:23
pigor: ... , przy określonych założeniach (jakich ?)
i z oczywistej tożsamości masz kolejno np. tak :
| | 1 | |
1= sin2α+cos2α /:cos2α ⇒ |
| = tg2α+1 ⇒ |
| | cos2α | |
| | 1 | | 1 | |
⇒ cos2α= |
| ⇒ cosα= |
| ; |
| | 1+tg2α | | √1+tg2α | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−
drugą analogicznie ...
3 gru 15:28
pigor: ..., cóż trochę się za długo "grzebałem"...

, a drugą −
− jak sądzę − podziel sobie "jedynkę" obustronnie przez sinα .
3 gru 15:31
DanielZ: dzięki już rozumiem, jakoś nie mogłem tego wykombinować.
3 gru 15:36