| 1 | ||
1. Tangens kąta nachylenia tworzącej stożka do płaszczyzny jest równy 1 | . Niech Pb | |
| 3 |
| 4 | ||
A. Pc=2Pb B. Pc=1,5Pb C. Pc= | Pb D. Pc=1,6Pb | |
| 3 |

| 4 | ||
tg α = | ||
| 3 |
| h | 4 | ||
= | |||
| r | 3 |
| 4r | ||
h = | ||
| 3 |
| 4r | ||
( | )2 + r2 = l2 | |
| 3 |
| 16r2 | |
+ r2 = l2 | |
| 9 |
| 25r2 | |
= l2 /√ | |
| 9 |
| 5r | |
= l | |
| 3 |
| 5r | 5r2π | |||
Pb = πrl = πr* | = | |||
| 3 | 3 |
| 5r2π | 8r2π | |||
Pc = Pb + Pp = | + πr2 = | |||
| 3 | 3 |
| α | α | 5 | α | |||||
Pw = | πl2 120π = | π144 | :144π | = | |||||
| 360° | 360° | 6 | 360° |
| V1 | (R1)3 | ||
= | = 27 ⇔ R1 = 3R2 | ||
| V2 | (R2)3 |
| P1 | (R1)2 | ||
= | |||
| P2 | (R2)2 |