matematykaszkolna.pl
granica Lukas: x→0
sin2x 

x 
24 lis 17:17
J:
 sinx 
= lim

*sinx = 1* 0 = 0 ..
 x 
24 lis 17:21
Lukas: Dzięki a takie coś n→
2n+1+3n+1 2n*2+3n*3 

=

2n+3n 2n+3n 
 
 2 
3n[(

)n*2+1*3
 3 
 
=

 
 2 
3n[(

)n
 3 
 
 0*2+3 
=1n*

=0
 0 
24 lis 17:27
J: ..mianownik: 3n(1 + (2/3)n) .. i granica = 3
24 lis 17:34
Lukas: Masz jeszcze chwile bo jutro mam z tego kart i nie wiem niektórych przykładów. x→0
arctg(3x−9) 3arctg(x−3) 

=

x2−9 (x−3)(x+3) 
 arctg(x−3) 3 
=

*

=1
 x−3 x+3 
24 lis 17:42
Lukas: ?
24 lis 18:20
razor: x→0?
24 lis 18:23
Mila: Nie możesz wyłączyc 3 z argument arcusa!
24 lis 18:54
Lukas: to jak to zrobić ?
24 lis 20:25
Mila: Do czego dąży x ? Do zera? Zobacz dokładnie treść.
24 lis 20:26
Lukas: x→3
24 lis 20:27
Lukas: up
24 lis 20:43
bezendu: lim x→0
arctg(3x−9) 

*3*(x−3)
(3x−9) 
 

(x−3)(x+3) 
 
arctg(3x−9) 

*3
(3x−9) 
 
=

 (x+3) 
 1*3 1 
=

=

 6 2 
24 lis 20:59
Mila: Korzystasz z granicy specjalnej.
 arctg(x) 
limx→0

=1
 x 
======================
 arctg(3x−9) 
lim x→3

=
 x2−9 
 arctg(3x−9) 
=lim x→3

=
 (x−3)*(x+3) 
 3*arctg(3x−9) 
=lim x→3

=
 (3x−9)*(x+3) 
 3 1 
=

*1=

 6 2 
24 lis 21:08
bezendu:
24 lis 21:09
bezendu: x→3 oczywiście
24 lis 21:10
Mila: Ta brzydka minka to dla mnie?!
24 lis 21:11
bezendu: Nie, ta brzydka minka obrazuję, że nic nie umiem do kolokwium i mi się wszystko myliemotka
24 lis 21:19
Mila: Posłuchaj dobrej muzyki.
24 lis 21:21
Lukas: x→0
tgx−sinx 
sinx−sinxcosx 

cosx 
 

=

=
sin3x sin3x 
 
sinx 1−cosx 

*

*x2
cosx x2 
 
=

 sinx*sin2x 
=i mam problem z mianownikiem
 sinx 
sin3x=sinx*sin2x=

*x*sin2x ?
 x 
24 lis 21:22
kyrtap: ale bezendu pieprzysz nie od rzeczy
24 lis 21:24
bezendu: Muszę jeszcze coś porobić Mila masz jakieś zadania z funkcji odwrotnych i cyklometrycznych ?
24 lis 21:25
Mila:
sinx 

−sinx}{sin3x}=
cosx 
 sinx−sinx*cosx 
=

=
 cosx*sin3x 
 1−cosx 
=

=
 cosx*sin2x 
 1−cosx 1−cosx 
=

=

=
 cosx*(1−cos2x) (1−cosx)*(1+cosx)*cosx 
 1 
=

 (1+cosx)*cosx 
 1 1 
limx→0

=

 (1+cosx)*cosx 2 
24 lis 21:32
kyrtap: Mila naprawdę dobrze radzi abyś posłuchał muzyki
24 lis 21:33
Lukas: pierwiastek (n/2) z 2n+1 i poza pierwiastkiem −2
24 lis 21:38
Lukas: rysunek
24 lis 21:39
Lukas: n→
24 lis 21:49
Lukas: ?
24 lis 22:10
Mila: (2n+1)2n=n(2n+1)2→1 limn→[n(2n+1)2−n)=−
24 lis 22:20
Lukas:
 2 
ale tam jest {n}{2} a nie

 n 
24 lis 22:24
Mila: 310=1013 n10=101n
24 lis 22:26
Lukas: ok, to jeszcze Panią pomęczę ! Mogę ?
24 lis 22:35
Lukas: x→0
In(1+x) 

3x 
24 lis 22:57
razor: jest taki wzór
 ln(1+an) 
lim

= 1 przy an → 0
 an 
24 lis 22:59
Lukas:
In(1+x) 

*x
x 
 

3x 
24 lis 23:07
razor:
x 

= x1/2−1/3 = x1/6 = 6x → 0
3x 
24 lis 23:15
Lukas: Dzięki razor.
24 lis 23:17
Mila: Jutro, Łukasz, rozwiązywałam długi przykład Patrykowi. Teraz dobranoc. Wrzuć problemy, jak wejdę jutro na forum, to popatrzę.
24 lis 23:51
Lukas: Ok, może przełożymy tą kart. Dziękuję i dobranoc.
24 lis 23:56
Lukas: Jest tu jeszcze ktoś?
25 lis 15:51
Lukas: Wyjąsni mi ktoś funkcje odwrotne i cyklometryczne ?
25 lis 15:59
kyrtap: a co chcesz wiedzieć bo trochę nad tym siedziałem
25 lis 16:03
Lukas: Wszystko co pomoże mi zaliczyć kart, wgl tego nie rozumiem.
25 lis 16:08
kyrtap: pokaż jakie masz zadania z cyklometrycznych powinienem umieć je zrobić
25 lis 16:09
Mila: ?
25 lis 16:10
Mila: Wpisuj zadania, wyjaśnimy.
25 lis 16:10
Mila: Pisz w nowym wątku.
25 lis 16:12