x2 | ||
∫ | ||
√2x2+2x+1 |
x2 | x2 | |||
∫ | dx = √2∫ | dx | ||
√2x2+2x+1 | √4x2+4x+2 |
t2 − 2 | ||
x = | ||
4t+4 |
4t2+4t − (2t2−4) | ||
t − 2x = | ||
4t+4 |
t2+2t+2 | ||
t − 2x = 2 | ||
4t+4 |
2t(4t+4) − 4(t2−2) | ||
dx = | dt | |
(4t+4)2 |
8t2+8t−4t2+8 | ||
dx = | dt | |
(4t+4)2 |
t2+2t+2 | ||
dx = 4 | dt | |
(4t+4)2 |
x2 | ||
∫ | dx = | |
√2x2+2x+1 |
(t2−2)2 | 4t+4 | (t2+2t+2) | ||
2√2∫ | dt | |||
(4t+4)2 | (t2+2t+2) | (4t+4)2 |
x2 | (t2−2)2 | |||
∫ | dx = 2√2∫ | dt | ||
√2x2+2x+1 | (4t+4)3 |
x2 | √2 | (t2−2)2 | ||||
∫ | dx = | ∫ | dt | |||
√2x2+2x+1 | 32 | (t+1)3 |
x2 | √2 | t4−4t2+4 | ||||
∫ | dx = | ∫ | dt | |||
√2x2+2x+1 | 32 | (t+1)3 |
x2 | √2 | (t+1)4−4(t+1)3+2(t+1)2+4(t+1)+1 | ||||
∫ | dx = | ∫ | dt | |||
√2x2+2x+1 | 32 | (t+1)3 |
x2 | √2 | |||
∫ | dx = | (∫(t+1)dt − | ||
√2x2+2x+1 | 32 |
dt | 1 | 1 | ||||
4∫dt+2∫ | +4∫ | dt+∫ | dt) | |||
t+1 | (t+1)2 | (t+1)3 |
x2 | ||
∫ | dx = | |
√2x2+2x+1 |
√2 | (t+1)2 | 4 | 1 | 1 | |||||
( | −4(t+1)+2ln(t+1)− | − | ) | ||||||
32 | 2 | t+1 | 2 | (t+1)2 |
x2 | √2 | 1 | (t+1)4−1 | (t+1)2+1 | |||||
∫ | dx = | ( | −4 | +2ln(t+1)) | |||||
√2x2+2x+1 | 32 | 2 | (t+1)2 | t+1 |
x2 | ||
∫ | dx = | |
√2x2+2x+1 |
√2 | (t2+2t+2)(t2+2t) | t2+2t+2 | ||||
( | −4 | +2ln(t+1)) | ||||
32 | 2(t+1)*(t+1) | t+1 |
x2 | √2 | (t2+2t+2)(t2+2t) | t2+2t+2 | |||||
∫ | dx = | ( | −2 | |||||
√2x2+2x+1 | 8 | 2(t+1)*4(t+1) | 2t+2 |
1 | ||
+ | ln(t+1))+C | |
2 |
x2 | √2 | 1 | ||||
∫ | dx = | ((x+ | )√4x2+4x+2−2√4x2+4x+2 | |||
√2x2+2x+1 | 8 | 2 |
1 | ||
+ | ln(2x+1+√4x2+4x+2) )+C | |
2 |
x2 | √2 | 1 | 1 | |||||
∫ | dx = | ( | (2x−3)√4x2+4x+2 + | ln(2x+1+√4x2+4x+2) ) | ||||
√2x2+2x+1 | 8 | 2 | 2 |
x2 | √2 | |||
∫ | dx = | ((2x−3)√4x2+4x+2 +ln(2x+1+√4x2+4x+2) ) | ||
√2x2+2x+1 | 16 |
x2 | 1 | √2 | ||||
∫ | dx = | (2x−3)√2x2+2x+1+ | ln(2x+1+√2√2x2+2x+1) + C | |||
√2x2+2x+1 | 8 | 16 |