Rozwiązywanie nierówności -metodą nierówności równoważnych
KINIA: Rozwiąż nierówności:
1.(2−
√2)x>
√2
2.(3−π)x<−1
3.(1+
√5)x≤1+
√5
x>
1π−3
x≤1
+ co robimy gdy jest takie równanie?
1√2−1
(gdzie te −1 wędruje? do pierwiastka, czy?)
Proszę o
dokładne wytłumaczenie co robimy..., naprawdę próbuję po raz 100 i mi to nie
wychodzi
16 lis 10:59
KINIA:
1.
(2− √2)x> √2 \\ (2+ √2)
2x>2√2 +2
x>√2+1
mam taki tok myślenia, wiec czemu w odpowiedziach jest inaczej? Co robię źle ?
16 lis 11:08
Saizou : 1)
(2−
√2)x>
√2 zauważ że 2−
√2>0 więc możemy podzielić naszą nierówność przez 2−
√2 i nie
zmienić kierunku nierówności, czyli
(2−
√2)x>
√2 /:2−
√2
| | √2 | |
x> |
| wyciągnijmy z mianownika √2 przed nawias |
| | 2−√2 | |
16 lis 11:10
Olgaaa: a jaka jest poprawna odpowiedź?
16 lis 11:11
Saizou :
| 1 | | √2+1 | |
| = |
| =√2+1 usunąłem niewymiernośc z mianownika |
| √2−1 | | 2−1 | |
16 lis 11:12
Olgaaa: A przepraszam, już widzę, że dałaś wcześniej poprawne rozwiązania
16 lis 11:14
KINIA: czyli jeżeli chcemy podzielić przez 2−√2 lub 2+√2 to jest od czegoś zależne?
16 lis 11:14
Olgaaa: 2)
(3−π)x<−1
3−3,14 <0 więc dzieląc przez te wyrażenie, trzeba zmienić znak
| | 1 | |
gdy wyciągniesz minus przed nawias to zostanie Ci x> |
| |
| | π−3 | |
16 lis 11:17
Olgaaa: a przykład trzeci podobnie jak pierwszy

średnio rozumiem Twoje pytanie
16 lis 11:21
KINIA: wiem, że Cię pięknie "męcze" ale nie wiem jak się wyciąga i po co przed nawias

czy mnozę
wtedy wszystko razy −1? czyli
| | −1 | |
x> |
| \\−1 znowu mi to samo wychodzi ... (+ czy π musi się "przemieścić" czy dobrze |
| | −3+π | |
rozumiem pod nawiasem nie może być wynik ujemny na początku?)
16 lis 11:24