$$
\lim x, y \to\left( 0, \infty \right) \frac{1}{xy}tg \frac{xy}{1+xy}.
\lim x, y \to\left( 0, 0 \right) y+xsin (\frac{1}{y}) .
\lim x, y \to\left( \infty, \infty \right) \frac{x+y}{x2−xy+y2} .
$$
| 1 | xy | |||
lim(x,y)→(0,∞) | *tg( | ) | ||
| xy | 1+xy |
| 1 | ||
lim(x,y)→(0,0) y+x*sin( | ) | |
| y |
| x+y | ||
lim(x,y)→(∞,∞) | ||
| x2−xy+y2 |